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ABSTRACT 

 In this paper, an efficient algorithm, which combines concepts from wavelet theory and co-

occurrence matrices, is presented for detection of defects encountered in textile images. 

Detection of defects within the inspected texture is performed first by decomposing the gray 

level images into sub-bands, then by partitioning the textured image into non-overlapping sub-

windows and extracting the co-occurrence features and finally by classifying each sub-window 

as defective or non-defective with a Mahalanobis distance classifier being trained on defect free 

samples a priori. The experimental results demonstrating the use of this algorithm for the visual 

inspection of textile products obtained from the real factory environment are also presented. 

Experiments show that focusing on a particular band with high discriminatory power improves 

the detection performance as well as increases the computational efficiency. 
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1.   Introduction 

 Visual inspection constitutes an important part of quality control in industry. Quality control 

is designed to ensure that defective products are not allowed to reach the customer. For this reason, 

quality control activities form an essential information feedback loop for the whole business, with 

potential influence on the design, process planning and logistics functions as well as on 

manufacturing. Until recent years, this job has been heavily relied upon human inspectors. 

Development of fast and specialized equipment, however, has facilitated the application of image 

processing algorithms to real-world industrial inspection problems.  

 Texture analysis has nearly three decades long past. During the seventies and early eighties, 

the algorithms have been mainly based on first and second order statistics of the image pixel gray 

level values as spatial domain gray level co-occurrence matrix (SDCM) and neighboring gray level 

dependence matrix (NGLDM) [1-3]. In mid-eighties, model based methods such as Markov 

Random Fields (MRF) and simultaneous autoregressive (SAR) models have appeared as an 

alternative. Wavelets, although have been known for many years, received the attention of image 

processing society only after the papers of Daubechies [4], who has provided the discretization of 

the wavelet transform (WT), and Mallat [5], who has established the connection between the WT 

and the multi-resolution theory. Thus, starting from the late eighties, signal processing methods 

based on Gabor transform and the WT have replaced the statistical and model based methods [6-8]. 

Representing signals in multiple resolutions by the WT is believed to enable extraction of more 

powerful features than the single scale case. Features extracted are, mainly, based on band energy 

and entropy. Although frequency based features work well for most of the applications, it can not 

be argued that this will be true for all of the cases as shown in  [3] and [9], where statistical features 

outperformed the former.   
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 One of the application areas of texture analysis is defect detection in textured images. 

Texture defect detection can be defined as the process of determining the location and/or extend of 

a collection of pixels in a textured image with remarkable deviation in their intensity values or 

spatial arrangement with respect to the background texture.  

 Most of the texture defect detection applications are on textile, paper, steel and wood 

inspection. There have been a number of applications of texture processing to inspection problems. 

Erçil et.al. [10] have proposed a model-based technique to detect and locate the various kinds of 

defects that might be present in a given painted surface. Jain et.al. [11]  have used the texture 

features computed from a bank of Gabor filters to automatically classify the uniformity of painted 

metallic surfaces. Chen and Jain et.al. [12] have used a structural approach to defect detection in 

textured images. Conners et.al. [13] have utilized texture analysis methods to detect defects in 

lumber wood automatically. Siew et.al. [2] have proposed a method for the assessment of carpet 

wear. Dewaele et.al. [14] have used signal processing methods to detect point and line defects in 

texture images. Cohen et.al. [15] have modeled textile fabric images through MRF and used easily 

computable sufficient statistics as features in place of model parameters during the classification of 

samples as defective or non-defective via a generalized likelihood test. Lee et.al.  [16] have used 

neural networks to classify defects through energy and entropy features computed from the 

adaptive wavelet packet expansion of the steel images. Jasper  et. al. [17 ] have demonstrated that 

the adaptive wavelet basis can be used to locate defects in woven fabrics. Song et. al. [18] have 

developed a color clustering scheme based on human color perception. This scheme together with 

the texture information is used to detect defects in textured images. Iamberlini  et.al.  [19] have 

developed an optical method that uses Fourier transformation and spatial filtering. This method is 

used for real time defect detection in textured images. Campbell and Muırtagh[20] have used 

morphological filtering to extract texture features, to detect localized and extended flaw patterns. 

The performance of the system is tested on denim fabric that contains real defects. 
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 In this study, an efficient new method, namely, the sub-band domain co-occurrence matrix 

(SBCM) method [21] is presented. It is shown how combined use of two approaches, i.e. extracting 

frequency based features through signal processing methods (such as WT) and statistical features 

from SDCM can lead to effective solutions for the texture analysis problems particularly, the 

texture defect detection problem. WT is used to determine the frequency bands carrying the most 

information about the texture by decomposing images into multiple frequency bands and 

computing the band energies. This can be viewed as dimensionality reduction or removing the 

irrelevant data prior to the feature extraction process. Thus, WT offers the ability of robust feature 

extraction in images. Then Haralick features [1] are extracted from the co-occurrence matrices 

computed from the sub-bands that represent the texture best. In the detection part, Mahalanobis 

distance classifier is used to decide whether the test image is defective or not.   

  Organization of the paper is as follows: Section II introduces the background theory for the 

WT and the co-occurrence matrices. Section III describes the proposed texture defect detection 

system. Implementation details and experimental results are summarized in Section IV. Finally, 

Section V includes the concluding remarks. 

2.  MATHEMATICAL FRAMEWORK 

2.1.   Wavelet Transform 

 WT is defined as a decomposition of a signal with a family of real orthonormal basis 

functions, ψm n x, ( ) , obtained through translation and dilation of a kernel function, ψ ( )x , known as the 

mother wavelet [1,4,5,8,16].    

                                                        ψ ψm n

m mx x n,
/( ) ( )= −− −2 22                    (1) 

where m and  n are integers. Since ψm n x, ( ) form an orthonormal set, the analysis and synthesis 

formula for a signal f x( ) are, respectively, given by 

 

                                               c f x x dxm n m n, ,( ) ( )=
−∞

+∞

∫ ψ                         (2) 
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                            f x c xm n
m n

m n( ) ( ),
,

,=∑ ψ                                                      (3) 

The mother wavelet can be constructed by first determining a scaling function satisfying the two-

scale difference equation  

           φ φ( ) ( ) ( )x h k x k
k

= −∑2 2                        (4) 

and  then  relating ψ ( )x   to the scaling function via 
 
         ψ φ( ) ( ) ( )x g k x k

k

= −∑2 2                     (5) 

where      

                     g(k)=(-1)k 
h(1-k) .                     (6) 

In order to have wavelet bases obtained through the above procedure be unique, orthonormal and 

have desired regularity, the coefficients h(k) have to meet certain conditions[22]. Nice thing about 

this decomposition scheme is that one does not need to calculate explicitly the scaling and mother 

wavelet functions, but can obtain the transform coefficients, recursively, using h(k) and g(k). A J- 

level decomposition can be written as  

     f x c xk
k

k( ) ( ), ,= ∑ 0 0φ        

                                                      = ++ + +
=

+∑ ∑( ( ) ( )), , , ,c k d xJ k
k

J k j k
j

J

j k1 1 1
0

1φ ψ                   (7) 

where coefficients  c0,k  are given and coefficients cj +1,n  and  dj +1,n  at  scale j+1 are related to the 

coefficients cj,n  at scale j via   

 
           c c h k nj n j k

k
+ = −∑1 2, , ( )                           (8a) 

          d d g k nj n j k
k

+ = −∑1 2, , ( )                           (8b) 

for  0 ≤ ≤j J . In signal processing terms, operations in Eq. (8) is nothing but convolving 

coefficients cj,n  and  dj,n at resolution j with 
~

( )h n  and ~ ( )g n  and down-sampling by two   

(dropping every other sample) to obtain cj+1,n  and dj+1,n.  Here   ~
( )h n  and ~ ( )g n  are defined as 
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~

( )h n = h(-n)                             (9a) 

                                                ~ ( )g n  = g(-n)                                                     (9b) 

and can be  regarded as impulse responses of quadrature mirror lowpass and highpass  filters H and 

G, respectively.  Decomposition in the conventional wavelet transform scheme that is also called 

pyramid structured wavelet transform (PSWT) is carried recursively on the output of filter 
~

( )h n . 

The output of J-level decomposition will contain the low-resolution coefficient cj,n   and  detail 

coefficients dj,n  for each level (1 ≤ ≤j J ) ( Fig.1). In the synthesis, the procedure works opposite, 

i.e., the low-resolution coefficient cJ,n   and  detail coefficients dj,n  are first upsampled by two 

(inserting a zero between neighboring samples) and then filtered with h(n) and g(n) respectively. 

Decomposition in the conventional wavelet transform scheme that is also called pyramid structured 

wavelet transform is carried recursively on the output of filter 
~

( )h n . This, in signal processing 

terms, is equivalent to splitting each time the low-frequency band. This is suitable for signals with 

most of their energy concentrated in the low frequency regions. 

 Extension of wavelet to 2-D is achieved by expressing the 2-D basis functions as tensor 

product of two 1-D wavelet basis functions along the horizontal and vertical directions. The 

corresponding filter coefficients can be computed via[23]   

   hLL (k , l)= h(k)h (l)                          (10a) 

                                                              hLH  (k , l )=h(k)g(l)                  (10b) 

          hHL (k , l)= g(k)h (l)                  (10c) 

           hHH  (k , l )=g(k)g(l)                 (10d) 

WT, though new compared to the other orthogonal transformations such as discrete cosine 

transform (DCT), discrete sine transform (DST) and discrete Fourier transform (DFT), has become 

very popular and has been used in a wide range of image processing applications, ranging from 

segmentation to classification problems and from compression to detection algorithms.  The 

wavelet transform of an image generates a data structure known as scale-space representation. In 
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this representation, spatial/spatial-frequency resolution is not fixed as in DCT, DST and DFT, but 

change in an optimal way. Namely, the spatial resolution increases with frequency, and spatial-

frequency resolution becomes narrower as frequency decreases. So high frequency signals are 

precisely located in spatial domain, while the low-frequency signals are precisely located in the 

frequency domain. Sharp edges, which are well localized spatially and have a significant high 

frequency content, can be represented more compactly by WT than the other transforms. 

Furthermore, WT is computationally attractive, and does not introduce redundancy. An image can 

be represented in multiple resolutions by the same amount of data with the original form (Fig. 2). 

2.2. Co-occurrence Matrices  

 Among all statistical methods, the most popular one which is based on the estimation of the 

second order statistics of the spatial arrangement of the gray values, is the gray level co-occurrence 

matrices.  

 A co-occurrence matrix is a square matrix whose elements correspond to the relative 

frequency of occurrence of pairs of gray level of pixels separated by a certain distance in a given 

direction. Formally, the elements of a GxG gray level co-occurrence matrix Pd for a displacement 

vector d = (dx,dy) is defined as : 

                                        Pd (i,j ) = |{((r,s) , (t,v)) :I (r, s)=i, I (t, v)= j}|     (11)       
   
where I (⋅,⋅ )  denote an image of  size NxN  with G gray values,  (r, s), ( t, v)∈ NxN,    (t,v)=(r + dx, 

s + dy) and  | . | is the cardinality of a set.  

  Haralick, Shanmugan and Dinstein [1] proposed 14 measures of textural features which are 

derived from the co-occurrence matrices, and each represents certain image properties as 

coarseness, contrast, homogeneity and texture complexity. Those that are used, in this work, for 

extracting features in the defect detection of textured images are: 

1) Entropy :                 

        ENT =  − ∑∑ p i j p i j
ji

( , ) log ( , )               (12) 
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Entropy gives a measure of complexity of the image. Complex textures tend to have higher 

entropy. 

2) Contrast :       

         CON =    ( ) ( , )i j p i j
ji

−∑∑ 2              (13) 

Contrast feature is a measure of the image contrast or the amount of local variations present  in an 

image.  

3) Angular Second Moment :     

      ASM =    { ( , )}p i j
ji

2∑∑                           (14) 

Angular second moment is a measure of the homogeneity of an image. Hence it is a suitable 

measure for detection of disorders in textures.  For homogeneous textures value of angular second 

moment turns out to be small compared to non-homogeneous ones.  

4)Inverse Difference Moment :  

 

        IDM =    
1

1 2+ −
∑∑

( )
( , )

i j
p i j

ji

       (15) 

In Eqs. (12) - (15), p(i,j) refers to the normalized entry of the co-occurrence matrices. That is p(i,j) 

= Pd (i,j )/R  where R is the total number of pixel pairs (i,j). For a displacement vector d = (dx,dy) 

and image of size NxM  R  is given by  (N-dx)(M-dy). 

 

3. Texture Defect Detection 

3.1. General Overview 

 Texture defect detection can be defined as the process of determining the location and/or 

extend of various defects using textural properties of the given image. In classification and 

identification problems, features are derived from local windows. A single class is associated with 

each window so the feature space tends to form clusters. However, in defect detection problem, due 
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to the nature of the problem, the features derived from the defective sub-windows, do not cluster 

but they rather split around or even form clusters within the feature space of non-defective 

windows, depending on the type and size of the defect. This makes defect detection a complicated 

and a difficult problem compared to identification and classification. 

 Any machine vision system, whether it attempts to accomplish recognition, or 

identification, segmentation or classification tasks, very generally, can be thought to consist of two 

blocks.  The first block is the so-called feature extraction part. This is the place where data is 

transformed from a higher dimensional space into a lower dimensional form suitable for 

subsequent processing. Feature extraction is the most important part since the overall performance 

of a system primarily depends on the performance of this section.  The second part involves some 

kind of decision based on the data obtained in feature extraction phase. In recognition and 

identification, this is the block that makes matching against data gathered in advance and generates 

a decision whether the object under concern is among those known a priori. In classification, the 

decision generated involves grouping of data into classes under certain similarity measure.  

 It is clear from the decomposed textile images (decomposed by the wavelet transformation) 

that these images have lowpass characteristic.  It is observed that the energy content of the low-low 

band is around 60 per cent while high-high band has only the 5 percent of the total energy.  It is 

also observed that co-occurrence features compared with wavelet transform features are more 

powerful in capturing defects [21]. 

 These two observations have motivated the authors to consider extracting co-occurrence 

features from sub-band images. Advantage of such an approach will be twofold: First, dealing with 

smaller images would mean improvement in the computational efficiency since the computational 

complexity of co-occurrence matrices increases as the size of the image increases. Second, 

disregarding higher frequency bands which most of the time have a noise-like appearance and 

focusing on the lower resolution images will enhance the defects relative to the background texture. 
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Thus, using sub-band domain features (as it is called here) have increased the detection rates 

compared to the features derived from SDCM. 

 The proposed defect detection system consists of two stages [21]:  (i) The feature extraction 

part first utilizes WT to decompose textured images into sub-bands and then extracts co-occurrence 

features from the sub-bands and (ii) the detection part, a Mahalanobis-distance classifier that is 

trained by defect-free samples.  

 In the following sections, the two blocks that make up the proposed defect detection scheme 

will be elaborated. In this work, innovations are brought about mainly for the feature extraction 

part.  

3.1. Feature Extraction Part 

Given an image I(n,m) of size 2Nx2N, the following steps are applied to extract sub-band domain 

features: 

i-  Decompose the image I(n,m) into four bands using  wavelet filter coefficients to obtain   

images  ILL, ILH , IHL and  IHH  where L and H represent lowpass and highpass bands, respectively  

(Fig. 3).  

ii-   Calculate energy  ex of each decomposed  image  as: 

                   ex x= ∑∑
1

2N
I n m

mn

( , )  

where x denotes LL, LH, HL and HH  bands. 

iii-  If energy of a sub-band in the decomposed image is significantly lower than the maximum sub-

band energy, discard this band and consider only the remaining sub-bands. That is, consider bands 

with ex > Cemax where C is a constant less than one. 

iv- Divide each sub-band image into non-overlapping sub-windows  Sx,i of size pxp.  Indices x and 

i denote sub-band and sub-windows, respectively ( 2)p/NM;M1   (   i =≤≤ ). Sub-window of this 

size in the sub-band image corresponds to a sub-window Si of size 2px2p in the original image. 
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v-  Derive the co-occurrence matrices Pθ for   d =1 ( pixel separation distance) and angles θ = 

(0, π/4, π/2, 3π/4) radians.   

vi- Calculate ENT, CON, ASM, IDM for each co-occurrence matrix as in Eqs. (12)-(15).  

vii- Compute mean  µX  and standard deviation σX  for each feature of  four angles.  

viii- Construct the vector  

fx,i = [µENT  σ ENT  µCON  σ CON  µASM  σ ASM  µIDM  σ IDM]. 

ix- Repeat steps (v) to (viii) for all bands (x) being retained according to the  argument  in  step 

(iii) .    

x-  Feature vector for  i-th sub-window Si in the original image is constructed as :  

                               si =[ fLL,i fLH,i ....]
T 

xi- Repeat steps (v) to (x) for all i. 

Since the resolution of the images change when sub-band decomposition is carried out, the defect-

free images have also been decomposed into sub-bands  for the calculation of the correct 

classification rates (CR) so that the location of the defects would correspond to those in the ground 

truth as found by a human expert. 

3.3. Detection Part 

 The detection part of the system is a classifier utilizing Mahalanobis distance measure to 

assign each feature vector (i.e., each sub-window of the image) a label (class) as defective or non-

defective. Formally, the classification consists of a learning phase and a classification phase. These 

phases will be elaborated in the subsequent sections. 

Learning phase   

(i) Given k defect-free 2Nx2N fabric images, calculate the feature vectors for each sub-window of 

the image using the feature extraction scheme given above. Consider these vectors as the true 

feature vectors and name them as ti  ( Mki1 ≤≤ ). 
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(ii)  Compute  the   mean  vector  m and  the  covariance matrix  K  for the feature vectors ti . 

Classification phase   

(i)  Given a test image calculate the feature vectors si’s using the feature extraction scheme 

given above. 

(ii)  Compute the  Mahalanobis distance di between each feature vector si  and the mean vector m  

                      di = (si -m)T
K

-1 (si -m)                      (16)  

where K is the covariance matrix. Vector m and matrix K are determined in  the learning phase. 

(iii) Classify a sub-window Si for which di exceeds a threshold value α as defective, else identify it 

as non-defective. i.e.,   

 

Si =  

defective

nondefective

if d

otherwise

i >







α

 

 

The threshold value α is determined by the formula  

               α = Dm + η (Dq - Dm )                           (17) 

Dm and Dq are, respectively, the sample median and the sample upper quartile of the order statistics 

Di obtained when distances di arranged in ascending order and η is a constant determined 

experimentally. So, the second term of summation in Eq. (17) is the confidence interval. For a 

2Nx2N sized image partitioned into M sub-windows of size 2px2p, Dm =(DM/2+DM/2+1)/ 2 and Dq = 

(D M-M/4+ D M-M/4+1 )/2. In calculating the threshold, for an image, the sample median of the 

distances of sub-windows from the learned sample in place of mean is used since if there are 

defective sub-windows, the mean will not be a reliable measure. 

Intuitively, what the classifier does is to assign the image sub-windows with considerable 

difference from the rest as defective. 
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4. Implementation And Results 

 One possible application domain for the texture defect detection algorithms, among many 

others, is the textile fabric inspection. Hence, for the experimental justification of the algorithm, 

real fabric images acquired by a CCD camera in a laboratory environment are used [21]. The 

database consists of 36 256x256 sized 8-bit long gray level images. Seventeen of those images are 

void of defects while each of the remaining 19 contains defects of different size (extended-

localized) and nature (point-line) that occur most frequently in the textile fabric production process 

(Fig. 4). Training of the system is attained by using16 defect free images. The rest of the set has 

been used for testing the algorithm. Decomposition of raw images into sub-bands is performed 

using Battle-Lemarie wavelet filter coefficients and the length of the decomposition filter has been 

chosen as 16. Before computing the co-occurrence matrices, sub-band images are quantized into 8-

levels (3 bits). This results in enormous computational saving while extracting the (ENT, CON, 

ASM and IDM) features, without any significant effect on the final results. Window size used, in 

scanning the images depends both on the resolution of the camera used for image acquisition and 

the textural properties of the fabrics as well as how localized the defects. In the experiments, the 

highest performance (90.78%) is obtained by using 32x32 sized non-overlapping sub-windows for 

the original image. This performance can be slightly improved, at the expense of the computation 

time, by introducing some sort of overlap between the sub-windows for better treatment of thin line 

defects occurring at the border of the adjacent cells. In the experiments, the value of constant C in 

step (iii) of the feature extraction algorithm is chosen as 0.35. For this value, only the LL band is 

retained. When the tests are repeated for smaller values of C such that all four bands are 

considered, the results have not changed considerably. Figure 5 illustrates the performance of 

SBCM method when only the LL band or all four bands are retained. Results indicate that using 

only the lower resolution images is sufficient. This indicates that C equals 0.35 is a good choice.  
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 For comparison purposes, the SDCM method [1], the MRF based method [15], PSWT [7], 

wavelet packet signature (WPS)[8,16] and Gabor filtering[24,25]  are implemented for the 

available database.  

For the SDCM method, after quantizing the image to 8 levels and dividing it to 32x32 non-

overlapping sub-windows, the co-occurrence matrices Pθ are derived. The co-occurrence matrices 

are computed for d =1 (pixel separation distance) and angles θ = (0, π/4, π/2, 3π/4) radians. Then 

the same Haralick features, namely, ENT, CON, ASM, IDM for each co-occurrence matrix are 

calculated.  Then the feature vectors are constructed using the mean µX and the standard deviation 

σX for each feature of four. To extract features for the MRF, the method discussed in [15] is used. 

A feature vector of length 25 computed from the sufficient statistics of a ninth order MRF model is 

formed for each sub-windows of size 32x32. For the PSWT method, the image is again divided 

into non-overlapping sub-windows of size 32x32 and each sub-windows is decomposed into sub-

band images by 2-level pyramid structured wavelet transform. For each decomposed sub-band 

image (children node), the energy is calculated. The feature vector of each sub-window consists of 

the energies of the 7 sub-band images.  

For the WPS, 2-level wavelet packet expansion is applied to each sub-window of size 

32x32. The feature vector of each sub-window consists of the energy values of the 1-level and 2-

level decomposed sub-band images. Specifically, the feature vectors consist of 20 different energy 

values. 

The textured images are decomposed using 28 complex 2-D Gabor filter tuned at  seven  

radial  frequencies (F) each one octave apart (1 2 , 2 2 , 4 2 , 8 2 , 16 2 , 32 2 , 64 2  

cycles/image-width) and  four  orientations (0, 45, 90 and 135 degrees). Orientation bandwidth (Ω) 

is chosen to be 45 degrees. These 28 filters form a nearly orthogonal set and provide uniform 

coverage of the frequency plane [24]. The output image of each filter is divided into 32x32 sized 
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non-overlapping sub-windows and the energy of each sub-window is calculated. Thus, the feature 

vector of each sub-window consists of 28 energy values. 

 For completeness, the sub-band domain MRF (SBMRF) method is also implemented. In 

this method, the MRF models of the sub-band images, rather than the raw images, are obtained by 

wavelet transformation. For SBMRF, on the other hand, 16x16 sub-windows are used to extract 

ninth order MRF features from low-low band images obtained by decomposition of the original 

256x256 sized fabrics into four bands using Battle-Lemarie filters.   

 In Fig.6, the correct detection versus false alarm rates, known as receiver operating curve 

for all methods are plotted. The classification rates for all set of features are depicted in Fig.7. The 

classification rate, CR, is defined as:  

               CR=100* (Ncc+ Ndd)/ Ntotal                                                   (18) 

where Ncc , Ndd  and Ntotal  are, respectively, the number of sub-windows being classified as clean 

when they are clean, the number of sub-windows being classified as  defective when they are 

defective and the total number of sub-windows being tested. Results, as depicted in Figs.6-7, 

demonstrate clearly the advantage of the proposed algorithm that incorporates some sort of 

frequency information on the features by the use of sub-band decomposition scheme. In order to 

show the power of SBCM features over the SDCM, the distance values of the sub-windows for the 

defective fabric illustrated in Fig. 4(q) are plotted in Fig.9. It is very interesting to notice how the 

defective cells have been enhanced with respect to the clean ones in the SBCM method [22]. 

Computational requirements of each method are summarized in Table 1. 

  In a sense features derived using two approaches to texture modeling, namely, statistical 

(SDCM) and signal processing (PSWT, WPS, Gabor) and a hybrid of both (SBCM) are compared 

in terms of defect detection. 

 The following conclusions can be derived when the proposed method is compared with the 

signal processing methods; In terms of false alarm and correct detection rates it is ranked 
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immediately after the Gabor filtering method (Fig.6). The sole disadvantage may be the selection 

of feature set in case of textures with very different characteristics. It is known that multi-channel 

Gabor filters are optimum in terms of spatial/spatial-frequency localization. Detection capacity of 

multi-frequency energy features derived from Gabor filtered images is apparent in the SOC curves 

(Fig.6). In the experiments carried out, most of the defects are detected with relatively small false 

alarm rates. However, when computational and storage requirements are concerned one can not 

speak about the same optimality.  The computational demand is approximately as much as 100 

times that of wavelet transform based method. A possible remedy is to reduce the filter set by 

incorporating feature selection or parameter tuning algorithm as suggested in [24] and [25]. But 

even if a single filter is used, the computational requirement can not be less than that of WPS based 

system. In the experiments 28 filters are used. When different subsets from these 28 filters were 

selected, the detection rates dropped considerably. The proposed method is superior than the two 

wavelet based methods, namely, pyramid structured wavelet transform and the wavelet packet 

signatures which perform almost the same. Computationally, SBCM method is superior to the 

PSWT, WPS and Gabor filters. 

 Comparing the proposed method with MRF, it is observed that performance-wise they are 

almost at the same level while the computational saving introduced by SBCM method is around 

43% (Fig.5-6 and Table I). 

 Comparing the proposed method with SDCM, it is observed that SBDM performs better in 

terms of detection at an increase of 50% computational complexity. 

 When the MRF and the SBMRF methods are compared, the sub-band domain model 

introduces an increase of 1% in classification rate. 

 In general it can be stated that the method that is applied to the sub-band images is superior 

over the method applied to the raw images (i.e. SBCM is superior to SDCM, SBCM is superior to 

WPS and PSWT, SBMRF is superior to MRF).  
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 SOC curves and classification rates about all methods are plotted in the Figs. 6 and 7, 

respectively.  Computational requirements of each method are summarized in Table I. 

5. Conclusions 

 In this paper, an efficient texture defect detection method based on SBCM features is 

introduced.  When textures with frequency content mostly concentrated on a single band are 

considered, focusing on that particular band and discarding the others, which carry information 

with low discriminatory power, improves the detection performance. In general, it can be stated 

that the method that is applied to the sub-band images is superior than the same method applied to 

the raw images (i.e. SBCM is superior to SDCM, SBCM is superior to WPS and PSWT, SBMRF is 

superior to MRF). Considering the results obtained with respect to computational complexity and 

reliability, the SBCM approach seems to be feasible for real-time factory implementations. 
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Figure 1 Two-level pyramid structure wavelet decomposition scheme 
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                    Figure 2 (a) A textile fabric image, (b) its wavelet transform 
 

 

 

 

 

 

                                            

 

    Figure 3 Decomposition of image I(n,m) 
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Figure 4 (cont.)                      
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                                                                    Figure 4 (cont.) 
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                      Figure 4 (cont.) 
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Figure 4 (a)- (s) Defective textile images 
(t) Nondefective (clean) textile image 
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     Figure 5 Average SOC curves for SDCM and SBCM based systems 
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        Figure 6 Average SOC curves for all methods 
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Figure 7 Performance of each method in terms of classification rates 

 
 

 

 
 

 
 

 

Figure 8 Defective fabric image illustrated in figure 4(l) partitioned into 32x32 subwindows 
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                                     (b) 
Figure  9   Distance (di) values for the subwindows SI  (Si :i=1 to 64) of defective image 

illustrated in figure    4 (q) obtained using  (a) SDCM and  (b)SBCM (bottom). 
 

 
 
 
 
 
 
 
 
 


