2-B KAFES SÜZGEÇ YAPILARI VE BUNLARIN EN KÜÇÜK KARELER YÖNTEMİYLE UYARLANMASI

Ruşen Meylan, Savaş Sezen, Ayşin Ertüzün, Yorgo İsteфанопулос
Elektrik-Elektronik Mühendisliği Bölümü,
Boğaziçi Üniversitesi,
80815-Bebek İstanbul
erutz@boun.edu.tr

Özetçe

Bu bildiride; çeşitli kafes süzgeç yapıları, düzgelenmiş (normalized) ve düzgelenmemiş (unnormalized) en küçük kareler yöntemiyle uyarlanmış ve elde edilen uyarlamaları süzgeçlerin başarısını, 2-Boyutlu (2-B) özbağlamalı (autoregressive) süreçlerin modellenmesi esas alınarak karşılaştırılmıştır. Uyarlanmanın başarısını artırmak için, kafes parametreleri aynı taraflı bicimiyile güncellenmiş; bu sayede gürültünün daha iyi yok edildiği de gözlemmiştir.

1. GİRİŞ

2. 2-B KAFES SÜZGEÇ YAPILARI

2-B Kafes süzgeç yapları, birbiri ardına sıralanmış ve yansıma katsayıları ile tanımlanmış çok girişli ve çıkışlı katmanlardan oluşur. Girişler ve çikanlar eşanlı olarak iletilen ieri ve geri yönderdeki öngörü hata alanlarıdır. 2-B kafeslerde, tek bir 2-B yapıda bir adet ieri yönde öngörü hata alanı ve bir dizi geri yönde öngörü hata alanı birleştirilmiştir. 2-B kafes süzgecin giriş-çıkış bağlantısı giristekleri öngörü hatalarının bir doğrusal birleşimi olarak aşağıdaki şekilde tanımlıdır:

\[e^{(n)} = K^{(n)} e^{(n-1)} \]

\[e^{(n)} \text{ ve } e^{(n-1)} \] sırasıyla n'inci katmanın giriş ve geçiktilmiş giriş vektörleridir. Bu vektörlerin ilk elemanı ieri yönde öngörü hata alanını, diğer elemanları ise geri yönde öngörü hata alanlarının göstermektedir. Geri yönde öngörü hata alanlarının sayısı kullanlan 2-B kafes yapısına bağlı olarak değişmektedir. K^{(n)}, n'inci katmandaki yansıma katsayıları matrisi olup boyutları kullanılan yapıya göre belirlenir. Bu matrisin elemanları n'inci katmanın çıkışındaki hata alanlarında birisinin veya bunların hespisin toplam gücünün en aza indirecek şekilde bulunur. Q^{(n)}, n'inci katmanın çıkışındaki ortalamada hatanın gücünün ve aşağıdaki şekilde ifade edilebilir:

\[Q^{(n)} = E[e^{(n)}(i,j)T e^{(n)}(i,j)] \]

\[E[] \] bekleinen değer, T ise vektör deviri işlemini göstermektedir. (2)'de gösterilen denklemin optimum yansıma katsayılarını verecek şekilde çözümü aşağıdaki ifadeyi verir:

\[R^{(n)} K^{(n)} = r^{(n)} \]
2.2 Altı-Parametreli Kafes Sürçeğ

Normalde (5.d) geçerli değildir ve bu koşul zorlanmamalıdır. Mor ve çalışma grubu [2]’de bu koşul gözardı ederek yanı düzlemde simetrik olan sürçeğe esdeger bir yapı geliştirmislerdir. Bir yan düzlem iki çeyrek düzleme karşılık geldiği için iki ayrı parametre kümesi kullanılmaktadır. Öte yandan (6)’daki denklem hala geçerli olup \(K^{(n)}\) aşağıdaki şekilde verilmektedir:

\[
K^{(n)} = \begin{bmatrix}
1 & -k^{(n)}_1 & -k^{(n)}_2 & -k^{(n)}_3 \\
-k^{(n)}_1 & 1 & -k^{(n)}_2 & -k^{(n)}_3 \\
-k^{(n)}_2 & -k^{(n)}_3 & 1 & -k^{(n)}_1 \\
-k^{(n)}_3 & -k^{(n)}_2 & -k^{(n)}_1 & 1
\end{bmatrix}
\]

Bunun sonucunda aşağıdaki iki ayrı denklem setinin çözülmesi gerektmektedir:

\[
R^{(n-1)}_m k^{(n)}_m = r^{(n-1)}_m \quad (m = 1, 2)
\]

\[k^{(n)}_1 = [k^{(n)}_1 k^{(n)}_2 k^{(n)}_3]^T
\]

\[k^{(n)}_2 = [k^{(n)}_a k^{(n)}_b k^{(n)}_c]^T
\]

(5.d)’de gösterilen denklemin denklemi edilmesi doğa olarak \(R^{(n)}\) ve \(r^{(n)}\) in de değişmesini gerektir.

2.3 Sekiz Parametreli Kafes Sürçeğ

[3]’te geliştirilen sekiz-parametreli kafes sürçeği yapısında (2,0), (2,1), (2,2), (1,2), (0,2) koordinatlara denk gelen beş adet yeni geri yönde öngörü hata alanı tanımlanmaktadır. Öte yandan bu yeni modelin bir katımsı üç- ve altı-parametreli sürçeğin iki katmanına eşdeğerdir. İlgili yansıma katsayıları sırasıyla \(k_4, k_5, k_6, k_7\) ve \(k_8\) olarak tanımlanmaktadır. Bir sekiz-parametreli kafes sürçeğin giriş-çıkış ilişkisi aşağıdaki değişikliklerle (1)’deki şekle benzemektedir:

\[
e^{(n)}(i, j) = [e^{(n)}_{00}(i, j) e^{(n)}_{10}(i, j) e^{(n)}_{11}(i, j) e^{(n)}_{20}(i, j) e^{(n)}_{21}(i, j) e^{(n)}_{12}(i, j) e^{(n)}_{02}(i, j)]^T
\]

\[
e^{(n)*}(i, j) = [e^{(n)}_{00}(i, j) e^{(n)}_{10}(i-1, j) e^{(n)}_{11}(i-1, j-1) e^{(n)}_{20}(i-2, j) e^{(n)}_{21}(i-2, j-1)]^T
\]

Yansıma katsayıları vektörü şu şekilde verilmektedir:

\[
k^{(n)} = [k^{(n)}_1 k^{(n)}_2 k^{(n)}_3 k^{(n)}_4 k^{(n)}_5 k^{(n)}_6 k^{(n)}_7 k^{(n)}_8]^T
\]

\(K^{(n)}\) ise 9x9 boyutlarında olup (13)’te verilmektedir:
3. EN Küçük Kareler Yöntemiyile 2-B Uyarlama Algoritmaları

[1]'de geliştirilen uyarlama algoritması altı ve sekiz-parametreli kafes süzgeçlerin katsayılarının güncellemesinde kullanılabilecektir. Algoritmada yer alan büyüklüklerin tanımına aşağıda verilmektedir.

\(k^{(n)}(i,j) \): n’inci katman ve (i,j) pikselindeki, elemanları yarışma katsayıları olan vektör,

\(\check{R}^{(n)}(i,j) \): (n-1)’inci katman ve (i,j) pikselindeki anlık özilinti matrisi,

\(\hat{P}^{(n)}(i,j) \): (n-1)’inci katman ve (i,j) pikselindeki anlık çapraz ilinti vektörü,

\(\hat{Q}^{(n)}(i,j) \): n’inci katman ve (i,j) pikselindeki anlık öngörü hatalarının karesi,

\(\nabla_k \hat{Q}^{(n)}(i,j) \): n’inci katman ve (i,j) pikselindeki anlık gradyant,

olmak üzere en küçük kareler yöntemiyle yarışma katsayılarının uyarlanması aşağıdaki şekilde verilebilir:

\[
\begin{align*}
 k^{(n)}(i,j) &= k^{(n)}(i,j-1) - \Gamma^{(n)}(i,j) \nabla_k \hat{Q}^{(n)}(i,j) \quad (14)
\end{align*}
\]

Burada

\[
\begin{align*}
 \nabla_k \hat{Q}^{(n)}(i,j) &= \check{R}^{(n-1)}(i,j) k^{(n)}(i,j-1) - \hat{P}^{(n-1)}(i,j) \quad (15)
\end{align*}
\]

olarak tanımlanmıştır. Basamak büyüklüğü matrisi olarak tanımlanan \(\Gamma^{(n)}(i,j) \) matrisi, elemanları 0 ile 1 arasında zamanda değişen köşegen bir matris olup bu matrisin boyutları uyarlanılan kafes süzgecin boyutlarına uygun olarak seçilir. (14) ve (15)’te verilen algoritmada \(\Gamma^{(n)}(i,j) \) matrisinin elemanları sabit olarak seçilirse, algoritma en küçük kareler yöntemi adını almaktadır. Öte yandan \(\Gamma^{(n)}(i,j) \) yerine \(\Gamma^{(n)}(i,j) \) yazılarak düzgellenmiş uyarlama algoritması elde edilir. \(\hat{Q}^{(n)}(i,j) \), n’inci katmandaki \(\hat{Q}^{(n)}(i,j) \) değerinin bir kestirim olup, aşağıdaki şekilde tanımlanmaktadır:

\[
\begin{align*}
 \hat{Q}^{(n)}(i,j) &= (1 - \eta)\hat{Q}^{(n)}(i,j-1) + \eta \hat{Q}^{(n)}(i,j) \quad (16)
\end{align*}
\]

olup \(\eta \), 0 ile 1 arasında olan bir sabit sayıdır.

3.1 Üç-Parametreli Uyarlamalı Kafes Süzgeç

Yukarıda anlatılan uyarlama algoritması üç-parametreli kafes süzgeç yapısı için şu değişikliklerle düzenlenir:

\[
\begin{align*}
 \check{R}^{(n)}(i,j) &= \check{S}^{(n)}(i,j) \check{S}^{(n)}(i,j)^T \quad (17,a)
\end{align*}
\]
\[
P^{(n)}(i, j) = e_{00}^{(n)}(i, j) \bar{g}^{(n)}(i, j)
\]

\[
\bar{g}^{(n)}(i, j) = \begin{bmatrix}
e^{(n)_{00}}(i-1, j-1) & e^{(n)_{11}}(i-1, j-1) & e^{(n)_{01}}(i, j-1)
\end{bmatrix}^T
\]

ile verilen tanımlar (14), (15) ve (16)’daki denklemler kullanılır.

3.2 Alti-Parametreli Uyarlamalı Kafes Süzgeç

(14)’te verilen denklem \(k_1^{(n)}\) ve \(k_2^{(n)}\) için iki defa kullanılır. Burada \(\bar{g}_1\) ile \(\bar{g}_2\) ve \(\bar{P}_1\) ile \(\bar{P}_2\) aşağıdaki şekillerde tanımlanmıştır:

\[
\bar{g}_1^{(n)}(i, j) = \begin{bmatrix}
e^{(n)_{00}}(i-1, j) & e^{(n)_{11}}(i-1, j-1) & e^{(n)_{01}}(i, j-1)
\end{bmatrix}^T
\]

\[
\bar{g}_2^{(n)}(i, j) = \begin{bmatrix}
e^{(n)_{00}}(i, j) & e^{(n)_{11}}(i, j) & e^{(n)_{01}}(i, j)
\end{bmatrix}^T
\]

\[
\bar{P}_1^{(n)}(i, j) = e^{(n)_{00}}(i, j) \bar{g}_1^{(n)}(i, j)
\]

\[
\bar{P}_2^{(n)}(i, j) = e^{(n)_{10}}(i, j) \bar{g}_2^{(n)}(i, j)
\]

3.2 Sekiz-Parametreli Uyarlamalı Kafes Süzgeç

(17.a) ve (17.b)’de \(\bar{R}^{(n)}\) ve \(\bar{P}^{(n)}\) için verilen denklemlerdeki \(\bar{g}\) vektörünün tanımlı sekiz-parametreli uyarlamalı süzgeç için aşağıdaki şekilde yapılmaktadır:

\[
\bar{g}^{(n)}(i, j) = \begin{bmatrix}
e^{(n)_{10}}(i-1, j) & e^{(n)_{11}}(i-1, j-1) & e^{(n)_{20}}(i-2, j) & e^{(n)_{21}}(i-2, j-1)
e^{(n)_{22}}(i-2, j-2) & e^{(n)_{12}}(i-1, j-2) & e^{(n)_{02}}(i-2, j-2)
\end{bmatrix}^T
\]

4. BİLGİSAYAR BENZETİMLERİ VE SONUÇLAR

Uyarlamalı 2-B kafes süzgeçlerinin performansını uyarlanmanın gürlülüğü ve yakınsama zamanı açısından test etmek amacıyla bilgisayar benzetimleri oluşturulmuştur. Yapılanlar aşağıdaki gibidir:

i. Aşağık tanımlı olan 128x128 boyutlarındaki 2-B özag麻烦amılmış süreç üretilmiş ve kafes süzgeçlere girdi olarak verilmiştir:

\[
y(i,j) = w(i,j)+0.03y(i-1,j-1)+0.014y(i,j-2)-0.011y(i+1,j)+0.033y(i,j-4)-0.47y(i-1,j)+0.195y(i-1,j-1)
+0.25y(i+1,j-2)-0.11y(i,j-3)-0.085y(i,j-4)-0.3y(i-1,j-1)-0.003y(i-2,j-2)+0.022y(i-2,j-3)
-0.0001y(i-2,j-4)+0.0067y(i-4,j-1)+0.002y(i-4,j-2)+0.0001y(i-4,j-4)
\]

Burada \(w(i,j)\) değişintisi (variance) 0.9 olan ıntinitis Gauss gürlültü süreçtedir.

ii. Alışılagenmiş tarama yöntemi ve önerilen tarama yöntemile, tüm katmanlardaki yansıma katsayıları hesaplanmıştır.

Şekil 1. Alışılagenmiş tarama yöntemi

Şekil 2. Önerilen tarama yöntemi

iii. Levinson-Durbin algoritmasıyla yansıma katsayılardan özag麻烦amılmış süreçin katsayıları kestirilmiş ve gerçek değeri -0.47 olan (1,0) katsayısının yakınsama-zaman grafiği tüm uyarlamalı kafes süzgeçler için elde edilmiştir. (Bkz. Şekil 3, 4, ve 5)

Elde edilen sonuçlar aşağıdaki şekilde özetlenebilir:

i. Önerilen tarama yöntemi sekiz-parametreli uyarlamalı süzgeç için gürlültüyü daha iyi yoketmiş ve daha hızlı yakınsama getirmiştir.
ii. Sekiz-parametreli süzgeç üç- ve alt-parametreli süzgece göre daha iyi performans sergilemiştir.
iii. Düzgünlenmiş uyarlama yöntemi ile tüm süzgeçler için daha yumuşak yaklaşma elde edilmiştir.

Şekil 3. Üç-parametreli süzgecin yaklaşma hızları

Şekil 4. Alt-parametreli süzgecin yaklaşma hızları

Şekil 5. Sekiz-parametreli süzgecin yaklaşma hızları

Not: A Alışlagelmiş, B Önerilen tarama yöntemi. Şekil 3, 4 ve 5’teki grafiklerden soldakiler düzgünlenmiş, sağdakiler düzgünlenmiş algoritmaya uygunlanmıştır.

Kaynakça: